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The angiopoietin (Ang)–Tie ligand–receptor system has
a key regulatory role in regulating vascular integrity
and quiescence. Besides its role in angiogenesis, it
is an important regulator in numerous diseases includ-
ing inflammation. Ang-1-mediated Tie2 activation is
required to maintain the quiescent resting state of the
endothelium. Agonistic Ang-1 functions are antagonized
by Ang-2, which is believed to inhibit Ang-1–Tie2 signal-
ing. Ang-2 destabilizes the quiescent endothelium and
primes it to respond to exogenous stimuli, thereby
facilitating the activities of inflammatory (tumor necro-
sis factor and interleukin-1) and angiogenic (vascular
endothelial growth factor) cytokines. Intriguingly, Ang-
2 is expressed weakly by the resting endothelium but
becomes strongly upregulated following endothelial
activation. Moreover, endothelial cells store Ang-2 in
Weibel–Palade bodies from where it can be made avail-
able quickly following stimulation, suggesting a role of
Ang-2 in controlling rapid vascular adaptive processes.
This suggests that Ang-2 is the dynamic regulator of the
Ang–Tie2 axis, thereby functioning as a built-in switch
controlling the transition of the resting quiescent
endothelium towards the activated responsive endo
thelium.

Introduction
The vascular endothelium lines the inside of all blood
vessels, forming a non-thrombogenic surface that controls
the entry and exit of plasma and white blood cells to and
from the bloodstream. It is one of the largest internal
surfaces of the body and can be considered conceptually
as a systemically disseminated organ. The quiescent
endothelium has turnover rates of months to years, and
proliferates only following angiogenic activation [1]. The
molecular mechanisms controlling the quiescent endothe-
lial-cell phenotype are poorly understood. Nevertheless,
the loss of quiescence is a common feature of conditions
such as inflammation, atherosclerosis, restenosis, angio-
genesis and various types of vasculopathies, and might be
a pathogenic mechanism linking different diseases that
are associated with endothelial-cell activation. Recent
research indicates that vascular morphogenic molecules
also have crucial roles in controlling vascular homeostatic
functions of the quiescent endothelium. Among these, the
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Tie2 ligand angiopoietin (Ang)-2 has a pivotal role in
controlling the responsiveness of the endothelium to exo-
genous cytokines.

Role of the vascular endothelium as a systemically
distributed organ system
Blood vessels provide the growing embryo with nutrients
and oxygen [2]. The formation of the blood vascular system
begins with the assembly of embryonic progenitor cells to
produce a primitive vascular plexus in a process known as
vasculogenesis [3]. Following the formation of this primary
vascular plexus, the vascular network expands by sprout-
ing, remodelingand regression (pruning) inaprocessknown
asangiogenesis.Vasculogenesisandangiogenesisaredown-
regulated in the healthy adult and are – except for the
organs of the female reproductive system – almost exclu-
sively associated with pathology when angiogenesis is
induced by microenvironmental factors (e.g. hypoxia or
inflammation) [1]. Pathologic processes associated with,
or induced by, angiogenesis include diseases as diverse as
cancer, psoriasis, macular degeneration, diabetic retinopa-
thy, thrombosis, and inflammatory disorders including
arthritis and atherosclerosis, but also obesity, diabetes,
asthma, infections and endometriosis. Moreover, insuffi-
cient angiogenesis is characteristic of ischemic heart disease
and pre-eclampsia [2]. This impressively illustrates the
broad array of diseases that are associated with the acti-
vatedendothelial-cellphenotype. Intriguingly,mostof these
diseases are restricted to specific vascular beds and organs;
for example, thrombosis occurs primarily in arterial blood
vessels. Atherosclerosis arises preferentially in the arterial
system. Leukocyte adhesion occurs preferentially in post-
capillary venules [4]. Tumor cells metastasize site-specifi-
cally to particular organs, and endothelial cell-surface
moleculesare believed tobe causally involved in this process
[5]. Thus, a specific set of adhesion molecules is specifically
expressed by, or presented to, the vascular bed following
activation of the endothelium, for example, intercellular
adhesion molecule (ICAM)-1 and vascular cell adhesion
molecule (VCAM)-1 at inflammation sites, and tumor-
endothelium markers (TEMs) at tumor vessels. Likewise,
even circulating cytokines and chemokines function locally
on specific vascular beds. However, the mechanisms con-
trolling vascular-bed-specific activation programs and sub-
sequent adhesion-molecule expression are unknown.

The quiescent vascular endothelium forms a tight
barrier that controls the passage of plasma and cells from
d. doi:10.1016/j.it.2006.10.004
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Box 1. Activation of the endothelium – the role of Weibel–

Palade bodies

Endothelial activation is controlled by multiple processes and

factors, including physical damage, hypoxia and altered shear-

stress, in addition to bacterial and viral infections. These stimuli

trigger an inflammatory response program that is mediated by

soluble factors including thrombin, histamine, endotoxin, oxidized

lipoproteins, prostaglandins, leukotrienes, interleukins, TNF and

VEGF. The activated endothelium facilitates immune-cell recruit-

ment, thrombus formation and local fluid accumulation owing to

the changes in endothelial-cell adhesiveness and permeability

[4,66,83]. The activation of endothelial cells involves rapidly acting,

presynthesized and stored molecules, in addition to a subsequently

slower transcriptionally regulated response program. Presynthe-

sized molecules are stored in endothelial-specific storage granules,

known as Weibel–Palade bodies (WPBs) [84]. The primary constitu-

ent of WPBs is von-Willebrand factor (vWF). In addition to a

processed multimeric form of vWF, WPBs also store P-selectin,

CD63, IL-8, endothelin-1, tissue plasminogen activator (t-PA) and

Ang-2 [84]. Interestingly, all of these molecules are involved in

controlling rapid endothelial responses, including hemostasis,

inflammation, hemodynamic adaptation, fibrinolysis and perme-

ability [66,84]. The molecules are released from WPBs within

seconds to minutes in response to multiple secretagogues, includ-

ing thrombin, histamine, serotonin, superoxides and sphingosine-1-

phosphate [85–87]. These secretagogues are potent inducers of

inflammation, coagulation, angiogenesis and other endothelial

responses, suggesting that the release of WPBs functions as an

initial step in the transition from the quiescent, resting endothelium

to the activated, responsive endothelium. Endothelium activation is

associated with the loosening of interendothelial junctional com-

plexes and the surface presentation of different adhesion molecules

[6,13,66]. For example, inflammatory activation triggers a molecular

cascade of events that results in leukocyte recruitment and

transmigration. The process starts with the rolling and tethering of

leukocytes to the activated endothelium, which is mediated by the

interaction of endothelial-cell and leukocyte selectins with their

corresponding counter-receptors. The surface presentation of WPB-

stored P-selectin is one of the first steps in the cascade of events that

lead to leukocyte recruitment. P-selectin- (and, later, E-selectin)-

mediated leukocyte rolling is followed by firm adhesion. Firm

adhesion is controlled by members of the immunoglobulin super-

family of adhesion molecules, including ICAM-1 and VCAM-1, which

are expressed on the lumenal side of inflammatory cytokine-

activated endothelial cells. Firm and irreversible adhesion of

leukocytes to the endothelium is followed by transendothelial

migration and extravasation into the underlying tissues [13,88].
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the bloodstream to the underlying tissues [4]. This barrier
consists of a single layer of endothelial cells covering the
lumenal side of blood vessels. Ablumenally, endothelial
cells are anchored to an organ- and caliber-specific base-
ment membrane [1]. Mural cells (pericytes and smooth
muscle cells) ensheath the endothelial layer. They pene-
trate the basement membrane and make direct contacts
with endothelial cells. The barrier functions of the endothe-
lium are achieved through tight cell–cell contacts between
the endothelial cells that form junctions [6]. Moreover,
direct contact and cell–cell communication of endothelial
cells with mural cells and components of the extracellular
matrix also control the quiescent endothelial phenotype
[7]. Endothelial cells adhere to each other through junc-
tional transmembrane proteins that are linked to specific
intracellular structural and signaling complexes [6]. Junc-
tional proteins controlling endothelial barrier functions
include vascular endothelial (VE)-cadherin and N-cad-
herin at adherence junctions, and occludin, claudins and
junctional adhesion molecules (JAMs) at tight junctions
[8–10]. Interestingly, the organization of endothelial junc-
tions varies in different vascular beds – for example, the
brain vasculature is extremely tight to restrict permeabil-
ity and to form the blood–brain barrier. Consequently, the
brain vasculature contains numerous tight junctions [11].
By contrast, the number of tight junctions in postcapillary
venules is low, enabling sensitivity to permeability-indu-
cing agents and the paracellular transmigration of adher-
ent leukocytes [12]. Thus, different vascular beds are
differentially susceptible to exogenous stimuli. Innate
endothelial lineage and vascular-bed-specific properties
could be responsible for these differences. Alternatively,
microenvironmental cues might control a specific regional
endothelial-cell phenotype in a more dynamic fashion.

The endothelial layer can undergo a transition from the
resting anti-adhesive state to the active adhesive state (Box
1) [13]. Activation of the endothelium results in the expres-
sion of adhesion molecules. This leads to, for example,
leukocyte adhesion and transmigration or thrombus forma-
tion (Box 1). Thus, endothelium activation is not only pre-
requisite for initiating angiogenesis but also for the
initiating inflammation and, concomitantly, inflamma-
tion-associateddiseases. In fact, there is increasingevidence
that angiogenesis-regulating receptor tyrosine kinases are
also crucially involved in controlling endothelial-cell
responses during inflammation. Of these, the Ang–Tie sys-
tem is emerging as a key regulator of vascularmaintenance
and quiescent endothelial-cell homeostasis in which the
antagonistic ligand Ang-2 functions as an autocrine switch
of vascular responsiveness to exogenous stimuli.

Regulation of vascular maintenance and homeostasis
through the Ang–Tie system
TheAng–Tie ligand–receptorsystemconsistsof tworeceptor
tyrosine kinases, Tie1 and Tie2, and four corresponding
ligands, Ang-1, Ang-2, Ang-3 and Ang-4 [14]. The Tie recep-
tors are almost exclusively expressed by endothelial cells
and hematopoietic stem cells [15–20]. Tie2 expression could
also be detected on a subset of tumor-associated monocytes
andeosinophils [21,22].Tie1andTie2shareasimilaroverall
structure consisting of an extracellular domain with 33%
www.sciencedirect.com
similarity and an intracellular tyrosine kinase domain
with 76% similarity [19]. The angiopoietins were originally
identified as ligands for Tie2 [23–25]. Ang-1 and Ang-2 are
the best-characterized ligands, and were the first to be
identified [23,24]. Ang-4 and the mouse ortholog of Ang-4,
Ang-3, were identified later [25]. Surprisingly, Ang-3 and
Ang-4 function both as species-specific agonists and antago-
nists of Tie2 [26]. Intriguingly, no specific ligand has been
identified for Tie1. However, at high concentrations, Ang-1
binds to Tie-1 through integrins [27,28].

Ang-1 is constitutively expressed by many different cell
types:Ang-1 expression is found inpericytes, smoothmuscle
cells, fibroblasts and some tumor cells [23,29,30]. This is in
contrast to the expression of Ang-2, which is almost exclu-
sively expressed by endothelial cells themselves, and is also
detectable in Kaposi’s sarcoma cells and in Müller cells in
the retina [29–34]. Ang-2 mRNA is almost undetectable in
the quiescent vasculature; however, it is induced dramati-
cally at sites of endothelial-cell activation. Ang-2 expression



Figure 1. Angiopoietin and Ang-2 signaling in regulating the quiescent and

activated endothelial-cell phenotype. The Tie2 ligand Ang-1 binds to Tie2 and

induces its autophosphorylation. Ang-1-mediated PI 3-kinase activation results in

the phosphorylation and activation of Akt. Akt signaling controls the quiescent

endothelial-cell phenotype and promotes endothelial-cell (yellow box) survival.

Moreover, Akt phosphorylates and inactivates FKHR-1. Consequently, endothelial

Ang-2 expression is inhibited. Phosphorylated Tie2 also interacts with ABIN-2 and

prevents NF-kB signaling, thereby suppressing the expression of inflammation-

associated molecules. Ang-2 release from endothelial storage pools (WPBs) and

binding to Tie2 interferes negatively with Ang-1-mediated Tie2 signaling and

results in destabilization, thereby rendering the endothelium responsive to

stimulation by inflammatory and angiogenic cytokines. Abbreviation: PI3K, PI 3-

kinase.
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is induced by various cytokines, including vascular
endothelial growth factor (VEGF) and fibroblast growth
factor (FGF)-2, and by microenvironmental factors (e.g.
hypoxia) [29,35,36].

Both Ang-1 and Ang-2 bind to the same site in the
extracellular domain of Tie2 with similar affinities
[24,37]. The binding of Ang-1 to Tie2 mediates rapid
receptor autophosphorylation that promotes endothelial-
cell migration and survival. By contrast, Ang-2 binding to
Tie2 does not elicit rapid Tie2 autophosphorylation, sug-
gesting that Ang-2 functions as an antagonist ligand of
Tie2. This concept is also supported by the phenotypes of
genetically manipulated mice. Ang-1- and Tie2-deficient
mice have similar phenotypes. Both die in midgestation
owing to severe vascular remodeling defects causing per-
turbed vascular integrity. The phenotypic similarity of
Ang-1- and Tie2-deficient mice strongly suggests that
Ang-1 is the nonredundant, agonistic ligand of Tie2
[38,39]. Conversely, systemic embryonic Ang-2 overexpres-
sion results in embryonic lethality. The phenotype of these
Ang-2-transgenic mice largely phenocopies Ang-1- and
Tie2-deficientmice [24]. In contrast to the lethal embryonic
phenotype of Ang-2-transgenic mice, Ang-2-deficient mice
develop normally. These mice seem phenotypically normal
at birth but die within 14 days as a consequence of chylous
ascites (on a C129 genetic background) or develop normally
throughout adulthood (on a C57/Bl6 genetic background)
[32,40]. Together, these findings suggest that Ang-2 is
dispensable for proper embryonic development. However,
strong systemic Ang-2 elevation is potentially dangerous,
as evidenced by the embryonic lethal phenotype of Ang-
2-transgenic mice. The genetic data have also solidly
established Ang-2 as the functional antagonist of the con-
stitutively functioning Ang-1–Tie2 axis. The role of Ang-1–
Tie2 signaling as an important vascular maintenance
factor is also supported by the observation that constitu-
tive low-level Tie2 phosphorylation can be detected in the
adult in different vascular beds [41].

Ang-1-mediated Tie2 phosphorylation signals primarily
through the protein kinase B (PKB)–Akt pathway that
transduces survival signals (Figure 1) [42–45]. Akt signal-
ing leads to inactivation of the forkhead transcription
factor FKHR-1, which, in turn, is a potent inducer of
Ang-2 expression and also prevents Ang-2 secretion
[46,47]. Thus, Ang-1-mediated PKB–Akt signaling directly
inhibits endothelial-cell apoptosis and prevents activation
of the endothelium by inhibiting Ang-2 expression and
secretion. Tie2 activation also results in the recruitment
of A20-binding inhibitor of nuclear factor (NF)-kB (ABIN)-
2, which inhibits the NF-kB pathway [48,49]. This protects
endothelial cells from apoptosis and inhibits inflammatory
responses (Figure 1) [48,50]. Thus, constitutive Tie2 phos-
phorylation and signaling involves several signaling path-
ways that are collectively anti-apoptotic and maintain the
quiescent state of the resting endothelium.

Autocrine regulation of vascular homeostasis and
responsiveness through Ang-2
Constitutive Ang-1 expression and low-level Tie2
phosphorylation in the adult vasculature suggest that
Ang-1-mediated Tie2 signaling functions as the default
www.sciencedirect.com
pathway to control vascular quiescence. Ang-1 exerts a
protective effect on the endothelium and limits its ability to
be activated by exogenous cytokines. Ang-1 seals the vas-
culature: it is anti-inflammatory, protects against cardiac
allograft arteriosclerosis and radiation-induced endothe-
lial-cell damage, and promotes wound healing [48,50–55].
Furthermore, Ang-1 can inhibit VEGF-induced blood-ves-
sel formation and adhesion-molecule expression [56,57],
indicating that Ang-1-mediated Tie2 signaling controls
vascular homeostasis and endothelial activation.

Proper vascular homeostasis is tightly controlled by
balanced Tie2 signaling. Ang-1 overexpression induces
blood-vessel and lymphatic angiogenesis in particular
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experimental settings [56,58,59]. Moreover, Tie2
overexpression in the skin causes a psoriasis-like pheno-
type [60]. The most compelling genetic evidence for a strict
Tie2-activity dosage concept is the observation that an
activating Tie2 mutation causes venous malformations
that are composed of dilated endothelial channels [61].
The role of Ang-2 in this scenario is not well understood.
Genetic manipulation experiments inmice and cell-culture
experiments suggest that Ang-2 antagonizes Ang-1-
mediated Tie2 functions (Figure 2) [24,38,39,62]. However,
although Ang-2 is well-established functionally as an
antagonist of Ang-1–Tie2 signaling, direct evidence for
an inhibitory effect of Ang-2 on Tie2 phosphorylation is
lacking.

Ang-2 expression is tightly controlled. Ang-2 mRNA is
almost absent in the quiescent resting vasculature and
dramatically upregulated in tumor blood vessels [29].
Ang-2 expression is regulated by several different endothe-
liotropic cytokines [e.g. FGF-2, VEGF and tumor necrosis
factor (TNF)] and environmental cues (hypoxia, high
glucose levels and superoxides) [31,34,35,63,64]. Ang-2
protein is stored in endothelial-cell Weibel–Palade bodies
(WPBs) and, thus, is readily available following endothe-
lial stimulation with WPB secretagogues such as phorbol
12-myristate-13-acetate (PMA), thrombin and histamine
[32,65]. The release of Ang-2 results in rapid destabiliza-
tion of the endothelium, suggesting that Ang-2 functions as
an autocrine negative regulator of the quiescent resting
endothelium [62,66]. Moreover, Ang-2 triggers an inflam-
matory response by activating the endothelium and indu-
cing permeability [67,68]. This was further supported by
Figure 2. Proposed model of Ang–Tie interactions in regulating (a) vascular quiescence

quiescent phenotype of the endothelium is maintained by constitutive Tie2 activation

muscle cells and pericytes (orange). Quiescent endothelial cells (green) store dimeric A

interferes with constitutive Ang-1–Tie-2 signaling and yields endothelial cells responsive

exposure of endothelial cells to Ang-2 in the absence of other cytokines (pink) result

continued induction of Ang-2 protein expression primes endothelial cells towards angio

event of the angiogenic cascade. Abbreviation: EC, endothelial cell.
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inflammation experiments in Ang-2-deficient mice [32].
These mice cannot elicit an acute inflammatory response
following intraperitoneal injection of thioglycolate or Sta-
phylococcus aureus. Detailed mechanistic analyses
revealed that Ang-2-deficient mice have an impaired abil-
ity to express cytokine-inducible adhesion molecules on
their lumenal cell surface after inflammatory activation.
Ang-2 does not affect endothelial-cell adhesion-molecule
expression directly. Instead, it primes the quiescent
endothelium to control the responsiveness to inflammatory
cytokines [32,66]. These findings support a model that
implies that a balanced Ang-1:Ang-2 ratio determines
the functional status of the vasculature (Figure 2). Accord-
ing to this model, vascular quiescence is maintained by
constitutive Ang-1–Tie2 signaling, with an Ang-1:Ang-2
ratio in favor of Ang-1 owing to downregulated Ang-2
production. Following endothelial-cell activation, WBP-
stored Ang-2 is released rapidly and Ang-2 is transcrip-
tionally upregulated strongly in endothelial cells, locally
shifting the Ang-1:Ang-2 ratio in favor of Ang-2.
Consequently, Ang-2-mediated negative interference
with constitutive Ang-1–Tie2 signaling destabilizes the
endothelium and primes it to acquire responsiveness to
other cytokines. The endothelium switches back to the
quiescent state in the absence of an additional stimulus.
The presence of other exogenous stimuli, such as TNF or
VEGF, induces an inflammatory and angiogenic response,
and, additionally, induces Ang-2 overexpression (Figure 2).
Alternatively, Ang-2 upregulation in the absence of other
exogenous stimuli might result in vascular destabilization
and subsequent vessel regression, for example as observed
, (b) vascular responsiveness, (c) vascular regression and (d) angiogenesis. (a) The

mediated by the binding of oligomeric Ang-1 (blue), which is secreted by smooth

ng-2 (red). (b) The activation of endothelial cells results in Ang-2 liberation, which

to the activities of other cytokines (e.g. inflammatory or angiogenic). (c) Continued

s in endothelial apoptosis and subsequent vessel regression. (d) Conversely, the

genic stimuli. Transcriptional upregulation of Ang-2 in endothelial cells is an early
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in the regressing ovarian corpus luteum during luteolysis
(Figure 2). A shift in the ratio from Ang-2 to Ang-1 controls
vascular responsiveness and homeostasis locally. Systemic
effects of Ang-2 are unlikely. Massive systemic transgenic
overexpression results in embryonic lethality [24]. Physio-
logically, however, circulating Ang-1 concentrations in
healthy adult humans exceed systemic Ang-2 levels, and
might, thereby, counteract the potentially deleterious
effects of systemically released Ang-2.

Ang-2 functions are context-dependent. Ang-2
facilitates angiogenesis if it functions in concert with
VEGF, and it leads to vessel regression in the absence of
VEGF [69]. In fact, endothelial cells in contact with smooth
muscle cells require Ang-2 to enable them to respond to
VEGF stimulation in a cellular model of sprouting angio-
genesis [70]. Similarly, Ang-2 modulates the sensitivity of
retinal vessels to VEGF, providing in vivo evidence for a
VEGF-priming role of Ang-2 [71,72]. The underlying mole-
cular mechanisms by which Ang-2 sensitizes endothelial
responsiveness to exogenous cytokines are presently
poorly understood. Ang-2-mediated negative interference
with constitutive Ang-1–Tie2 signaling might alter the
integrity of interendothelial cell contacts and junctional
complexes, and, thereby, affect the cell-surface expression
of different growth factor receptors, including receptors for
inflammatory and angiogenic cytokines. Alternatively, it is
also conceivable that Ang-2 signals by itself through Ang-
1–Tie2-independent mechanisms. Surprisingly little is
known about the effects of Ang-2 on Tie2 signaling. There
is evidence that Ang-2 functions as a Tie2 agonist in a
concentration- and spatiotemporal-dependent manner in
certain experimental settings. For example, it has been
shown that the long-term sustained stimulation of
endothelial cells with Ang-2 results in Akt signaling,
and promotes endothelial-cell survival, sprouting and
migration [70,73–75]. Furthermore, Ang-2 overexpression
in vivo promotes wound healing and protects against car-
diac allograft vasculopathy [55,76]. Moreover, there is
accumulating evidence that Ang-2 functions vary in an
organ-specific and vascular-bed-specific manner: for exam-
ple, experiments in which the gene encoding Ang-1 was
knocked into the Ang-2 locus showed that Ang-2 functions
as an agonist in lymphatic system development and as an
antagonist for the development of the hyaloid vessel in the
eye [40,77,78]. Thus, Ang-2 might also have agonistic
effects on certain vascular beds. However, these findings
are based mostly on cellular assays using high amounts of
recombinant Ang-2 and systemic overexpression of Ang-2
in vivo. Nevertheless, transgenic mouse experiments are
clearly showing that Ang-2 functions antagonistically on
the Ang–Tie system by interfering with the Ang-1–Tie2
axis, which induces blood-vessel regression and primes the
vascular bed towards stimulation by angiogenic and
inflammatory cytokines [24,32]. Clearly, further studies
will be needed to understand fully the agonistic versus
antagonistic functions of Ang-2, that is, (i) to unravel the
molecular mechanisms by which Ang-2 modulates rapid
vascular homeostatic functions and responsiveness
towards different cytokines, and (ii) to elucidate the
effects of Ang-2 on chronic vascular disease, most notably,
atherosclerosis, arthritis and tumor growth.
www.sciencedirect.com
Concluding remarks and future perspectives
Changes in the integrity and quiescent state of the vascular
endothelium are directly or indirectly involved in many
human diseases. The Ang–Tie system functions as a key
regulator of vascular quiescence. Ang-2 is the dynamic
player of the system, controlling the quiescence of the
endothelium as an autocrine built-in switch of endothelial
cells. These concepts are highly compatible with the phe-
notypes of genetically manipulated mice (i.e. Ang-1 = Tie2
agonist; Ang-2 = Tie2 antagonist).Muchneeds to be learned
about the molecular mechanisms of angiopoietin-ligand
interactions with the Tie2 receptor and the co-receptor
function of Tie1 to understand rationally under what con-
ditions of long-term stimulation Ang-2 can function as an
agonist of Tie2 signaling, which induces Tie2 phosphoryla-
tion. The detailed molecular analysis of the mechanisms
underlying angiopoietin function should have major ther-
apeutic implications. Ang-1 has potent anti-inflammatory
potential in several animal models [49,51–55]. However,
Ang-1 therapies might have crucial side effects. In addition
to inducing angiogenesis and vascular remodeling, Ang-1
also promotes pulmonary hypertension [58,59,79–81]. Like-
wise, given that Ang-1 functions constitutively and Ang-2 is
dynamically regulated, it is likely that Ang-2-manipulatory
therapies will be preferred. Ang-2-neutralizing reagents
have been developed as potential anti-angiogenic tumor
drugs [82]. Given that Ang-2 is dispensable for embryonic
vascular development [40], it has yet be seen what the
prospect of Ang-2-neutralizing tumor therapies will be.
Nevertheless, Ang-2-neutralizing therapies could prove
effective in acute settings to interferewith disease processes
associated with rapid vascular activation. Conceptually,
regulating vascular homeostatic maintenance function in
the adult using angiogenic cytokines marks an interesting
paradigm shift in the field of angiogenesis research. It has
raised awareness of the potential side effects of prolonged
anti-angiogenic treatments in tumor patients. In turn, it
might also broaden the scope of angio-manipulatory drugs
beyond angiogenesis to include non-neoplastic indications,
including inflammation or atherosclerosis.
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