
Eph receptors and their Eph receptor-interacting (ephrin) 
ligands together form an important cell communication 
system with widespread roles in normal physiology and 
disease pathogenesis1. Links between Eph receptors  
and cancer date back to the first identified Eph family 
member2. EPHA1 was cloned from a carcinoma cell 
line in a screen for new oncogenic tyrosine kinases. This 
novel receptor was found to be upregulated in tumour 
tissues compared with normal tissues and its overexpres-
sion caused the oncogenic transformation of NIH3T3 
fibroblasts2,3. The first ephrin ligand, ephrin-A1, was 
also identified from cancer cells a few years later4. The 
evidence implicating Eph receptors and ephrins in  
cancer is now extensive and continues to grow.

The activities of the Eph system in cancer are com-
plex, and intriguing in their paradoxical effects. For 
example, multiple Eph receptors and/or ephrins are 
present in most cancer cells. However, both increased 
and decreased Eph expression has been linked to can-
cer progression. Consistent with this dichotomy, there 
is good evidence that Eph receptors and ephrins can 
both promote and inhibit tumorigenicity. The factors 
responsible for these divergent activities are only now 
beginning to be uncovered.

Following a brief overview of the Eph and ephrin 
families and their bidirectional signalling mecha-
nisms, the factors that regulate their expression and 
the remarkable multiplicity of their roles in cancer 
are discussed, and the strategies under evaluation to 
target the Eph system for cancer therapy outlined. 
Other reviews provide more in-depth information on 
Eph signalling mechanisms in development and adult 
physiology1,5–8.

Eph and ephrin families
In the human genome there are nine EphA receptors, 
which promiscuously bind five glycosylphosphatidyl-
inositol (GPI)-linked ephrin-A ligands, and five EphB 
receptors, which promiscuously bind three transmem-
brane ephrin-B ligands5. Exceptions are the EPHA4  
and EPHB2 receptors, which can also bind ephrin-Bs and 
ephrin‑A5, respectively, and EPHB4, which prefer-
entially binds ephrin‑B2 only. Eph receptors typically 
interact with the cell surface-associated ephrins at sites 
of cell–cell contact (FIG. 1). In addition, soluble ephrin-As 
released from the cell surface retain the ability to activate 
EPHA2 (ReFs 4,9,10).

Eph–ephrin complexes emanate bidirectional sig-
nals: forward signals that depend on Eph kinase activity 
propagate in the receptor-expressing cell, and reverse 
signals that depend on Src family kinases propagate 
in the ephrin-expressing cell. Ephrin-dependent but 
kinase-independent Eph signals can also occur11–13. Eph 
signalling controls cell morphology, adhesion, migration 
and invasion by modifying the organization of the actin 
cytoskeleton and influencing the activities of integrins 
and intercellular adhesion molecules1,5. Recent work 
has also uncovered Eph effects on cell proliferation and 
survival as well as specialized cellular functions such as 
synaptic plasticity, insulin secretion, bone remodelling 
and immune function1.

Bidirectional signals can lead to the removal of the 
adhesive Eph–ephrin complexes from cell contact sites 
through an unusual endocytic mechanism that involves 
their internalization, together with patches of the sur-
rounding plasma membranes, into the receptor- or 
ephrin-expressing cell5. This enables the separation of 
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Abstract | The Eph receptor tyrosine kinases and their ephrin ligands have intriguing 
expression patterns in cancer cells and tumour blood vessels, which suggest important roles 
for their bidirectional signals in many aspects of cancer development and progression. Eph 
gene mutations probably also contribute to cancer pathogenesis. Eph receptors and ephrins 
have been shown to affect the growth, migration and invasion of cancer cells in culture as well 
as tumour growth, invasiveness, angiogenesis and metastasis in vivo. However, Eph signalling 
activities in cancer seem to be complex, and are characterized by puzzling dichotomies. 
Nevertheless, the Eph receptors are promising new therapeutic targets in cancer.
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Basal phenotype
Highly aggressive breast and 
prostate cancers with gene 
expression profiles similar to 
basal cells. Basal-type breast 
cancers are typically negative 
for oestrogen, progesterone 
and eRBB2 receptors. 
Basal-type prostate cancers 
have high expression of 
cytokeratin 5 and low 
expression of androgen 
receptor and prostate-specific 
antigen.

Nonsense-mediated  
mRNA decay
The process by which mRNA 
molecules carrying premature 
stop codons are degraded by a 
regulated pathway, thereby 
limiting the synthesis of 
abnormal proteins.

the engaged cell surfaces to produce the characteristic 
Eph-repulsive responses. Another mechanism allow-
ing cell separation involves protease-mediated cleav-
age of the Eph or ephrin extracellular domains14–18. 
Internalization and cleavage result in degradation, which 
can profoundly downregulate Eph levels. However, in 
certain cellular contexts Eph–ephrin complexes persist 
at intercellular junctions and emanate prolonged bidirec-
tional signals that favour adhesiveness. For example, the 
cell adhesion molecule E-cadherin promotes EPHA2–
ephrin-A1 localization at epithelial cell junctions and the 
metalloprotease ADAm19 stabilizes EPHA4–ephrin-A5 
at neuromuscular junctions independently of its pro-
teolytic activity19–21. A combination of Eph-dependent 
repulsive and adhesive forces can drive the segregation 
of cell populations expressing different combinations of 
Eph receptors and ephrins, which may include trans-
formed and normal cells or divergent subpopulations of 
tumour cells5,22,23.

There is also increasing evidence that other signal-
ling modalities beyond ‘conventional’ bidirectional sig-
nalling contribute to the multiple activities of the Eph 
system in cancer. For example, an initial extracellular 
Eph or ephrin cleavage by metalloproteases followed by 
γ-secretase-mediated cleavage in the transmembrane 
segment releases intracellular domains that can generate 
distinctive signals14,16,24,25. Eph receptors and ephrins can 
also signal independently of each other, through cross-
talk with other signalling systems, which produces yet 
more distinctive outcomes. In addition, they participate 
in feedback loops that may switch between different out-
puts depending on the state of other cellular signalling 
networks (FIG. 2).

Eph and ephrin dysregulation in cancer
The Eph and ephrin families have grown in complex-
ity during evolution, keeping pace with the increasingly 
sophisticated tissue organization of higher organisms. 
Finely coordinated spatial and temporal regulation of  

Eph receptor and ephrin expression controls many  
processes that are crucial for development and tissue 
homeostasis, including the formation of tissue bounda-
ries, assembly of intricate neuronal circuits, remodelling 
of blood vessels and organ size1,5. many Eph receptors 
and/or ephrins are also expressed in both cancer cells and 
the tumour microenvironment, where they influence 
tumour properties by enabling aberrant cell–cell com-
munication in and between tumour compartments26–32. 
mutations dysregulating Eph function are also likely to 
have a role in cancer progression.

Expression in cancer cells. many studies have correlated 
Eph and ephrin expression levels with cancer progres-
sion, metastatic spread and patient survival (TABLe 1). 
EPHA2, for example, is upregulated in many cancers 
and its expression has been linked to increased malig-
nancy and a poor clinical prognosis27,28,31,33. Furthermore, 
EPHA2 seems to be preferentially expressed in malignant 
breast and prostate cancers with a basal phenotype34,35. 
EPHB4 is also widely expressed in cancer cells and its 
increased abundance has been correlated with cancer 
progression29,36,37. However, decreased Eph or ephrin 
levels in malignant cancer cell lines and tumour speci-
mens have also been reported. For example, EPHA1 
is downregulated in advanced human skin and  
colorectal cancers38,39, EphB receptors in advanced color-
ectal cancer23,40–42 and ephrin-A5 in glioblastomas43. 
Furthermore, EPHB6 expression is lower in metastatic 
than non-metastatic lung cancers44. Reconciling these 
discrepancies, recent studies show that an initial Eph 
receptor upregulation (that is due to activated oncogenic 
signalling pathways and other factors) can be followed 
by epigenetic silencing in more advanced stages owing 
to promoter hypermethylation, as shown for several 
EphB receptors and EPHA1 in colorectal cancer23,39–41. 
Transcriptional repression, such as repression of EPHB2 
by REL (a member of the nuclear factor-κB family) in 
colorectal cancer, may also play a part in Eph silencing45. 
Intriguingly, differential transcriptional regulation has 
been reported for EPHB2 and EPHB4 during colorectal 
cancer progression37. This was attributed to a switch in 
the association of β-catenin from the p300 co-activator 
(which induces EPHB2 transcription) to the CREB bind-
ing protein (CBP) co-activator (which induces EPHB4 
transcription). An inverse expression pattern has also 
been observed for EPHA2 compared with ephrin-A 
expression in breast cancer cell lines, owing at least in 
part to feedback loops (FIG. 2a), and for several EphB 
receptors compared with ephrin-Bs in early colorectal 
tumours and breast cancer cell lines23,46,47.

Chromosomal alterations and changes in mRNA sta-
bility also regulate Eph and ephrin expression in cancer 
cells (TABLe 1). Several Eph receptor and ephrin genes 
are located in chromosomal regions that are frequently 
lost in cancer cells. For example, EPHA2, EPHA8 and 
EPHB2 are clustered at chromosomal region 1p36, which 
undergoes loss of heterozygosity in many cancers48,49. 
Some Eph genes, however, are in amplified regions50. 
Nonsense-mediated mRNA decay and interaction with 
mRNA-binding proteins can also regulate Eph mRNA 

 At a glance

•	The	Eph	receptors	are	the	largest	family	of	receptor	tyrosine	kinases.	They	bind		
glycosylphosphatidylinositol	(GPI)-linked	and	transmembrane	ephrin	ligands,	
generating	bidirectional	signals	at	sites	of	cell–cell	contact.

•	Eph	receptors	and/or	ephrins	are	widely	expressed	in	cancer	cells	and	tumour	
stroma,	but	they	can	be	downregulated	at	advanced	cancer	stages.	Often	Eph	
receptor	and	ephrin	levels	are	discordantly	regulated.	In	addition	to	changes	in	
expression	levels,	Eph	receptor	mutations	are	also	likely	to	have	a	role	in	cancer	
pathogenesis.

•	In	many	cellular	contexts,	Eph	bidirectional	signalling	promotes	an	epithelial	
phenotype	and	suppresses	cancer	cell–substrate	adhesion,	migration,	invasion	and	
growth.	Consistent	with	this,	Eph	receptor	signalling	seems	to	be	low	in	many	cancer	
cells	owing	to	an	imbalance	of	Eph	and	ephrin	expression	or	the	inability	of	receptor	
and	ligand	to	interact	effectively.

•	Eph	receptors	and	ephrins	can	also	promote	cancer	progression	through	poorly	
understood	mechanisms	that	do	not	involve	reciprocal	association	but	rather	depend	
on	crosstalk	with	oncogenic	signalling	pathways.	In	addition,	Eph	bidirectional	
signals	promote	tumour	angiogenesis.

•	Eph	receptors	and	ephrins	are	promising	new	therapeutic	targets	in	cancer,	and	many	
Eph-based	approaches	show	promise	for	prognosis	and	therapy.
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Cyclic stretch
Periodic stretch (or strain) to 
which vascular endothelial cells 
are subjected as a result of the 
rhythmic changes in vessel 
diameter caused by pulsatile 
blood flow.

Shear stress
The physical force exerted on 
endothelial cells as a result of 
blood flow.

stability in cancer cells49,51. These complex mechanisms 
of regulation parallel the multiplicity of Eph activities 
in cancer cells.

Expression in the tumour microenvironment. Several 
Eph receptors and ephrins are upregulated in vascular 
cells by tumour-derived factors and hypoxia. For example, 
tumour necrosis factor-α (TNFα), vascular endothelial 
growth factor A (vEGFA) and hypoxia-inducible fac-
tor 2α (HIF2α) have been shown to upregulate ephrin-A1 
in cultured endothelial cells52–54. Endothelial ephrin-B2 is 
upregulated by vEGF through the Notch pathway and by 
cyclic stretch, hypoxic stress and contact with smooth mus-
cle cells, whereas shear stress seems to decrease ephrin-B2 
expression in endothelial cells but increase it in endothe-
lial precursors by inducing their differentiation55–59. 

moreover, ephrin-B2 is expressed in pericytes and vascular 
smooth muscle cells57,60. Expression of EPHA2–ephrin-A1 
and EPHB4–ephrin-B2 in tumour blood vessels has been 
most extensively characterized, but other Eph recep-
tors and ephrins are also present in the tumour vascu-
lature54–57,61,62. By contrast, little is known about Eph and 
ephrin expression in other tumour compartments, such as 
activated fibroblasts and infiltrating immune and inflam-
matory cells. Nevertheless, Eph-dependent communica-
tion between these cells and tumour cells probably has an 
important role in tumour homeostasis.

Eph mutations with cancer relevance. Screens of tumour 
specimens and cell lines have recently identified muta-
tions in the genes encoding all the Eph receptors, whereas 
cancer-related ephrin mutations have not yet been 
reported, perhaps in part because many of the screens 
have focused on the kinome63–67 (see Further information; 
Catalogue of somatic mutations in cancer). mutations of 
at least some Eph receptors are predicted to have a role in 
cancer pathogenesis. For example, EPHB2 mutations have 
been identified in human prostate, gastric and colorectal 
tumours, and melanoma40,49,67–69. Some of these mutations 
can impair kinase function, and some are accompanied 
by loss of heterozygosity, suggesting a tumour suppressor 
role for EPHB2 forward signalling. Furthermore, several 
Eph receptors — particularly EPHA3 and EPHA5 — are 
frequently mutated in lung cancer63,70. The mutations are 
typically scattered throughout the Eph domains, includ-
ing the ephrin-binding domain and other extracellular 
regions67,70. Elucidating the effects of the mutations will 
provide important insight into the functional roles of the 
Eph system in cancer.

Tumour suppression
In many cancer cell lines, Eph receptors seem to be 
highly expressed but poorly activated by ephrins, 
as judged by their low level of tyrosine phosphory-
lation1,29,37,47,71,72. This was one of the first clues that 
ephrin-dependent Eph forward signalling might be det-
rimental to tumour progression. Furthermore, recent 
expression profiling of ApcMin/+ intestinal tumours from 
wild-type and Ephb4+/– mice has revealed an extensive 
transcriptional reprogramming that suggests anti-
proliferative and anti-invasive activities of EPHB4 in 
colorectal cancer73.

Eph forward signalling inhibits cell transformation. 
Forcing Eph receptor activation with soluble Fc fusion 
proteins of ephrin ligands can inhibit proliferation, sur-
vival, and migration and invasion of many types of can-
cer cells in culture as well as tumour growth in several 
mouse models5,29,42,47,74. Conversely, a dominant-negative 
form of EPHB4 has been shown to promote colorectal 
cancer proliferation and invasion73. These studies dem-
onstrate that Eph forward signalling pathways can lead 
to tumour suppression (FIG. 3). Indeed, Eph receptors 
that are activated by ephrins acquire the remarkable 
ability to inhibit oncogenic signalling pathways, such 
as the HRAS–Erk, PI3K–Akt and Abl–Crk pathways. 
Interestingly, this may reflect a physiological function of 

Figure 1 | eph receptor and ephrin domain structure and signalling interactions. 
Domain structures of Eph receptors and ephrins. Alternative splicing or proteolysis can 
generate extracellular and intracellular domain fragments of Eph receptors and ephrins of 
both the A and B classes. The major sperm protein (MSP) domain from vesicle-associated 
membrane protein (VAMP)-associated protein (VAP) proteins is another Eph ligand that 
can compete with ephrins for binding84. Eph receptor forward signalling involves 
ephrin-induced clustering, autophosphorylation and association with signalling effectors 
containing protein interaction domains such as Src homology 2 (SH2), PSD95, DLG, ZO1 
(PDZ) and sterile alpha motif (SAM)1,5. Some signalling proteins, such as certain guanine 
nucleotide exchange factors (GEFs) for Rho family GTPases, can constitutively associate 
with Eph receptors175. The activities of some effectors are modified by activated Eph 
receptors, for example through tyrosine phosphorylation (orange P). Phosphotyrosine 
phosphatases dephosphorylate Eph receptors and ephrins to dampen or terminate their 
activity. Eph receptors are also phosphorylated on serine/threonine residues (yellow P)176, 
which can have dramatic functional consequences72. The transmembrane ephrin-Bs 
mediate reverse signals, which involve Src-dependent tyrosine phosphorylation of their 
cytoplasmic segment and association with SH2 and PDZ domain-containing proteins5,6. 
EphB binding can also affect ephrin-B function by inducing serine phosphorylation, as 
shown in neurons7. The glycosylphosphatidylinositol (GPI)-linked ephrin-As also mediate 
reverse signals, through poorly understood signalling interactions that may occur in lipid 
rafts (dark purple). In neurons, ephrin-As can use the p75 nerve growth factor receptor as a 
signalling partner to activate the Src family kinase FYN177. Most domain names are shown 
on EphA and ephrin-A, and signalling interactions are shown on EphB and ephrin-B, but 
each applies to the other.
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Pericytes
Mesenchymal cell precursors 
to vascular smooth muscle that 
associate with endothelial cells 
during angiogenesis and 
provide support to small 
capillaries.

ApcMin/+

Mouse that carries the multiple 
intestinal neoplasia (Min) point 
mutation in one Apc allele and 
spontaneously develops 
intestinal adenomas. 
Commonly used model for 
human familial adenomatous 
polyposis and human sporadic 
colorectal cancer.

Mesenchymal-to-epithelial 
transition
The conversion of 
non-polarized and motile 
mesenchymal cells into 
polarized epithelial cells. 
Typically associated with 
increased e-cadherin levels and 
low cancer cell invasion and 
metastasis. It is the reverse of 
the better known epithelial-to-
mesenchymal transition.

the Eph system in epithelial homeostasis by promoting 
contact-dependent growth inhibition and decreasing 
motility and invasiveness. These changes are reminiscent 
of mesenchymal-to-epithelial transition (BOX 1).

Silencing of Eph forward signals in cancer cells. Cancer 
cells seem to use various mechanisms to minimize the 
tumour suppressor effects of Eph forward signalling. For 
example, the high EPHA2 or EphB expression and low 
ephrin expression observed in some cancers result in  
low bidirectional signalling23,46,47. Furthermore, co-
expressed Eph receptors and ephrins often do not inter-
act effectively in cancer cells20. This may be because they 
engage in lateral interactions that silence their signalling 
function, as has been shown in neurons and transfected 
cells5. Alternatively, loss of E-cadherin or vE-cadherin 
impairs endogenous EPHA2–ephrin-A1 interaction in 
malignant breast cancer and melanoma cells, respec-
tively20,75. The two cadherins seem to promote EPHA2–
ephrin-A1 interaction by stabilizing intercellular contacts 
and promoting the localization of EPHA2 at cell–cell 
junctions. Phosphotyrosine phosphatases also negatively 
regulate Eph receptor forward signalling in some cancer 
cells76. For example, the low-molecular-weight protein 
tyrosine phosphatase (Lmw-PTP; also known as ACP1) 
has been implicated in cell transformation through its 
ability to dephosphorylate EPHA2, thus counteracting 
ephrin-dependent activation77. The receptor-type PTPs 
PTPRO and PTPRF, and PTEN in Caenorhabditis elegans, 
also dephosphorylate Eph receptors78–80. However, it is not 
known whether this plays a part in cancer. Eph mutations 
may also contribute to disrupting forward signalling by 
impairing ephrin binding or kinase activity. For example, 
the EPHA3 E53K mutation in the mewo melanoma cell 
line abrogates ephrin binding66,81, and the EPHB2 G787R 
mutation found in colorectal cancer impairs kinase activ-
ity69. It will also be interesting to investigate whether sol-
uble Eph ectodomains that are generated by alternative 
splicing82,83 or proteolysis14–18,24 and proteins containing a 
major sperm protein (mSP) domain84 (FIG. 1) can decrease 
Eph signalling in cancer cells by functioning as naturally 
occurring antagonists.

Tumour confinement by surrounding ephrins. The 
tumour suppressor effects of Eph forward signalling 
can be active at the tumour periphery if the surround-
ing tissues express ephrins. In mouse tumour models, 
ephrins present in normal tissues have been proposed to 
inhibit expansion and invasiveness of incipient colorec-
tal and skin tumours expressing Eph receptors23,85,86. In 
addition, recent experiments in the developing zebrafish 
hindbrain raise the possibility that increased Eph or 
ephrin levels may drive the segregation of tumour cells 
from surrounding normal tissues, thereby decreasing 
invasiveness, not only through repulsive mechanisms 
but also by promoting adhesiveness between tumour 
cells22. Eph receptors may further decrease tumour inva-
siveness by promoting the formation of tight junctions 
in neighbouring epithelial cells through the stimula-
tion of ephrin-B reverse signalling87 (discussed below). 
Indeed, recent systems-level studies have implicated 
complex, asymmetric signalling networks in the sorting 
of ephrin-B1-expressing HEK293 cells from EPHB2-
expressing cells88. It is tempting to speculate that Eph 
receptors may contribute to tumour dormancy through 
these types of bidirectional signalling mechanisms that 

Figure 2 | eph feedback loops. a | EPHA2–HRAS–Erk 
negative feedback loop. Activation of the HRAS–Erk 
pathway increases EPHA2 expression through MEK1 and 
decreases ephrin-A1 expression, although it is not known 
whether this also occurs through MEK1 (ReFs 46,178,179). 
In turn, ephrin-dependent EPHA2 activation inhibits 
HRAS–Erk signalling and also downregulates EPHA2 levels 
by causing receptor internalization and degradation.  
b | Positive and negative EPHB2–MAPK feedback loops. In a 
positive feedback loop, ephrin-B-dependent EPHB2 
activation stimulates the HRAS–Erk pathway, and the 
increase in Mek and/or Erk activity in turn enables 
enhanced responsiveness of EPHB2 to ephrin-B stimulation 
through unknown mechanisms79. However, in a different 
cellular context, EPHB2 can also inhibit the HRAS–Erk 
pathway5,180, which may in turn reduce EPHB2 activation by 
ephrin. Ephrin-B1 stimulation can also downregulate EPHB2 
levels by causing internalization and degradation (not 
shown). c | EPHA2–Akt negative feedback loop. Akt 
(activated by growth factor receptors (GFRs), Src family 
kinases, or mutations in upstream proteins or Akt itself) 
phosphorylates S897 in the carboxy-terminal tail of EPHA2 
leading to increased EPHA2-dependent cell migration and 
invasion72. In turn, ephrin-A1-induced EPHA2 signalling 
inactivates Akt by causing its dephosphorylation at T308 
and S473, thus decreasing EPHA2 phosphorylation at 
S897 and, consequently, cell migration and invasion. Other 
pathways downstream of EPHA2 can also inhibit migration 
and invasion. d | EPHA2–E-cadherin positive feedback loop. 
E-cadherin expression increases EPHA2 expression, surface 
localization, interaction with ephrin-A1 and consequently 
forward signalling19,20 (BOX 1). In turn, EPHA2 signalling 
enhances E-cadherin-mediated adhesion. Dotted lines 
indicate the regulation of protein levels rather than activity. 
Orange P, tyrosine phosphorylation; yellow P, serine/
threonine phosphorylation.
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Table 1 | Examples of the regulation of Eph receptor and ephrin expression in cancer cells

Mechanism eph or ephrin Change Cell type and cancer type refs

Frequent chromosomal abnormalities that may lead to altered Eph or ephrin expression*

1p36 loss EPHA2, EPHA8 and EPHB2 ↓ Various cancers 48,49,69, 
187–190‡

1q21-q22 gain Ephrin-A1, ephrin-A3 and ephrin-A4 ↑ Various cancers See footnote‡

2q36.1 loss EPHA4 ↓ Cervical cancer 191

3p11.2 loss EPHA3 ↓ Lung and other cancers 187‡

3q21-qter gain EPHB3 ↑ Early-stage squamous cell lung carcinoma 50

5q21 loss Ephrin-A5 ↓ Myeloid cancers and prostate cancer 187,192§

6q16.1 loss EPHA7 ↓ Various cancers 187,192§

7q22 loss EPHB4 ↓ Myeloid cancers and colon cancer 187§

7q22 gain EPHB4 ↑ Various tumours and cancer cell lines 187,193,194

7q33-35 loss EPHB6 and EPHA1 ↓ Myeloid cancers 187

7q33-35 gain EPHB6 and EPHA1 ↑ Neuroblastoma and glioblastoma 187

13q33 loss Ephrin-B2 ↓ Multiple myeloma, chronic lymphocytic 
leukaemia, and head and neck cancer

187‡§

17p13.1-p11.2 loss Ephrin-B3 ↓ Various cancers See footnote‡§

19p13.3 loss Ephrin-A2 ↓ Various cancers 195§

Epigenetics

Promoter hypermethylation EPHA1 ↓ Advanced colorectal cancer 39

EPHA3 ↓ Leukaemias and haematopoietic tumour cells 196

EPHA7 ↓ Prostate, gastric and colorectal cancer 197–199

Soluble EPHA7 ectodomain ↓ B cell lymphomas 200

EPHB2 ↓ Colorectal cancer 40,189,201

EPHB4 ↓ Colorectal cancer 41

EPHB6 ↓ MDA-MB-231 breast cancer cells 202

mRNA stability

Nonsense-mediated mRNA 
decay

EPHB2 ↓ Prostate cancer 49

Binding sites for RNA binding 
protein ELAVL1 in  
3′ untranstaled region 

EPHA2, EPHA4 and ephrin-A2 ↓ HeLa cervical cancer and U373MG glioma 
cells

51

microRNA-210 Ephrin-A3 ↓ Endothelial cells 62,203

Transcription

Ras–MAP kinase (MEK1) EPHA2 ↑ Breast cancer cells and activated 
BRAF-transfected fibroblasts

46,179

p53 EPHA2, EPHB4 and ephrin-A1 ↑ Various p53-transfected cell lines 204–206

TWIST1 EPHA4 and ephrin-A4 ↑ Developing skull and possibly Sézary’s 
lymphoma

207,208

REL EPHB2 ↓ SW620 colon cancer cells 45

Wnt, β-catenin and TCF EPHB2, EPHB3 and EPHB4 ↑ Early colorectal cancer 23,209

Wnt, β-catenin, p300 and TCF EPHB2 ↑ Early colorectal cancer 37

Wnt, β-catenin, CBP and TCF EPHB4 ↑ Advanced colorectal cancer 37

Oestrogen EPHB4 and ephrin-B2 ↑ Mouse mammary epithelium 210

Ras and MAPK Ephrin-A1 ↓ MCF-10A mammary epithelial cells 46

Wnt, β-catenin and TCF Ephrin-B ↓ LS174T colon cancer cells 209

CBP, CREB-binding protein. *Chromosomal locations from the NCBI Human Genome Resources website . ‡Cancer GeneticsWeb. §Atlas of Genetics and 
Cytogenetics in Oncology and Haematology. 
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restrict tumour expansion. Accordingly, high EPHA5 
levels have been detected in various dormant but not 
fast-growing tumour xenograft models89.

Ephrin reverse signalling in tumour cells. Ephrin 
reverse signalling in cancer cells may in some cases also 
contribute to tumour suppression (FIG. 3). In the Xenopus 
laevis system and HT29 colon cancer cells, ephrin-B1 
tyrosine phosphorylation (which can be induced by 
interaction with EphB receptors or by activated growth 
factor receptors and Src) disrupts binding of the ephrin 
to the scaffolding protein PAR6, promoting the forma-
tion of tight junctions between cells87,90. Similar to its 
role in neurons, ephrin-B reverse signalling may also 
inhibit the migratory and invasive effects of the CXCR4 
G protein-coupled chemokine receptor in cancer cells5,6. 

Ephrin-A5 can downregulate epidermal growth factor 
receptor (EGFR) levels in glioblastoma cells43.

Tumour promotion
Conversely, forward and/or reverse Eph–ephrin signals 
can enhance malignant transformation in some cases. 
There is also increasing evidence that the Eph receptors 
are capable of unconventional signalling activities that 
do not depend on activation by ephrin ligands and  
that support cancer progression. moreover, it is well 
established that the Eph–ephrin system promotes 
tumour angiogenesis.

Eph forward signalling. In certain cellular contexts, 
Eph receptors that are activated by ephrins may have 
lost the ability to suppress tumorigenicity, and may have 

Figure 3 | Tumour suppression through bidirectional signalling. a | Ephrin-A5 reverse signalling downregulates 
epidermal growth factor receptor (EGFR) levels in glioma cells43. b | EphA receptors activate tuberous sclerosis complex 2 
(TSC2) in neurons to inactivate RHEB181. EphA activation of RHOA involves Ephexin family exchange factors and other 
pathways (FIG. 4). EPHA2 inhibits Akt72,179 and inactivates focal adhesion kinase (FAK) through the SHP2 phosphatase5. 
EPHA4 inhibits RAP1 through spine-associated RAPGAP (SPAR)1,7. Recruitment of the lipid phosphatase SHIP2 by EPHA2 
inhibits RAC1 and EPHA2 internalization182. EPHA4 inhibits RAC1 through Chimaerins1,183. EPHA2-mediated inhibition of 
ADP-ribosylation factor 6 (ARF6) in epithelial cells inhibits epithelial-to-mesenchymal transition (EMT)170. EPHA1 inhibits 
integrin-linked kinase (ILK)184. c | Ephrin-B1 disrupts focal adhesions through GRB4 (ReF. 5). Phosphorylation inhibits 
ephrin-B1 binding to PAR6, allowing PAR6 to bind GTP-bound CDC42 and activate atypical PKC (aPKC)87. Ephrin-Bs also 
inhibit signalling by the CXCR4 G protein-coupled chemokine receptor5. d | EphB signalling increases expression of the 
p110 subunit of PI3K91. EphB receptors (and EPHA2) activate Abl, which ultimately inhibits RAP1 and RAC1 (ReFs 42,47,107). 
EPHB2 inactivates RRAS through phosphorylation5. EPHB2 (and EPHA2) activates p120RASGAP to inhibit HRAS and 
RRAS5,180. EPHB2 can also activate Erk79. Some pathways are assembled from different sources, so the complete pathways 
are hypothetical. Pathways identified in neurons, and predicted to have tumour suppressing activity, are in blue boxes.  
Most other pathways were identified in cultured cells and their importance in cancer also remains to be proved. Dotted 
lines indicate the regulation of expression levels. For more details see ReFs 1,5–7,88,127. CDK5, cyclin-dependent kinase 5;  
GIT1, G protein-coupled receptor kinase-interacting ARFGAP 1; MMP2, matrix metalloproteinase 2; RAPGEF1, Rap guanine 
nucleotide exchange factor 1; RGS3, regulator of G protein signalling 3; SDF1, stromal cell-derived factor 1.
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even acquired oncogenic ability. For example, activating 
mutations may render oncogenic signalling path-
ways resistant to inhibition by Eph forward signalling. 
Furthermore, EPHB2 can promote proliferation in mouse 
intestinal progenitor cells and ApcMin/+ adenomas through 
an ABL1-mediated increase in cyclin D1 levels even 
though it inhibits invasiveness through other pathways91 
(FIG. 4). Activation of RHOA downstream of EPHA2 and 
EPHB4 promotes ameboid-type migration of cancer cells 
and destabilizes epithelial adherens junctions in vari-
ous cancer cell lines (FIG. 4), even though RHOA inhibits 
mesenchymal-type migration92–94 (FIG. 3). EPHA2 forward 
signalling in malignant melanoma and ovarian cancer 
cells can also promote vasculogenic mimicry75,95.

RRAS phosphorylation downstream of EPHB2 
(FIG. 4) can enhance glioma cell invasiveness, possibly 
by decreasing cell–substrate adhesion96, even though in 
other cell types Eph forward signals decrease cell adhe-
sion and migration5,47,97. Instead of inhibiting the HRAS–
Erk mAPK pathway, depending on the circumstances, 
EPHB2 can sometimes activate it5,79. In turn, activation 
of the Erk pathway enhances ephrin-dependent activa-
tion of overexpressed EPHB2 in cultured cells79. This may 
result in different EPHB2–mAPK feedback loops (FIG. 2b) 

that can either enhance or diminish cancer cell malig-
nancy. Indeed, activation of an engineered membrane-
anchored cytoplasmic domain of fibroblast growth factor 
receptor 1 (FGFR1) inhibits ephrin-dependent repulsive 
signalling by overexpressed EPHB2 through a mecha-
nism involving downregulation of the HRAS–Erk path-
way, suggesting that FGFR1 activation could neutralize 
the anti-invasive effects of EPHB2 in cancer cells79. By 
contrast, overexpressed EPHA4 and FGFR1 associate and 
potentiate each other’s oncogenic activities in cultured 
glioma and other cell types98,99. It will also be interest-
ing to determine whether Eph receptors can downregu-
late PTEN levels and perhaps activity in cancer cells, as  
suggested by a recent study in C. elegans80.

Unconventional Eph receptor activities. Downregulation 
of EPHA2 or EPHB4 by small interfering RNAs  
(siRNAs) or antisense oligonucleotides decreases cancer 
cell malignancy in culture and inhibits tumour growth 
in several mouse cancer models36,37,100–102. Furthermore, 
EPHA2 overexpression causes oncogenic transforma-
tion of mammary epithelial cells in culture as well as 
in vivo71,103. These experiments demonstrate positive 
effects of Eph receptors on cancer progression. Given 
the low levels of Eph forward signalling observed in 
many cancer cells, these tumour promoting activities 
are likely to be independent of ephrin stimulation and 
possibly also of kinase activity. Indeed, recent evidence 
shows that oncogenic signalling pathways can use Eph 
receptors to increase cancer cell malignancy.

Notable examples of how the altered signalling 
networks of cancer cells can subvert Eph function 
involve EPHA2. This receptor has been found to medi-
ate some of the oncogenic activities of EGFR family 
members, including cancer cell migration in culture 
and tumour growth and metastasis in a transgenic 
mouse breast cancer model104,105 (FIG. 4). EPHA2 also 
seems to be required for Src-dependent invasiveness 
of colorectal cancer cells in culture90. These effects may 
be ligand-independent and at least partly explained by 
the recently discovered crosstalk between EPHA2 and 
Akt, a serine/threonine kinase frequently activated in 
cancer cells72 (FIGs 2c,4). Phosphorylation by Akt of a 
single serine in EPHA2 seems to promote cancer cell 
migration and invasion, an effect that interestingly 
does not require EPHA2 kinase activity and is reversed 
by ephrin-A1 stimulation72. It will be important to 
investigate the details of the Akt–EPHA2 crosstalk 
and whether other Eph receptors may contribute to 
cancer progression through analogous mechanisms. 
EPHA2 has also been recently shown to promote epi-
thelial proliferation and branching morphogenesis in 
the developing mouse mammary gland by mediating 
hepatocyte growth factor (HGF)-dependent inhibi-
tion of RHOA activity106, which is in contrast to the 
RHOA activation induced by EPHA2 overexpression, 
ephrin stimulation or crosstalk with the ERBB2 recep-
tor103,105,107. It is not yet known whether an ephrin-
independent EPHA2–HGF receptor crosstalk may 
have a role in cancer. Ephrin-independent activities of 
Eph receptors may also include the modulation of the 

 Box 1 | The Eph system can promote an epithelial phenotype

Forward	signalling	by	EPHA2	and	several	EphB	receptors	in	epithelial	and	cancer	cells	
can	induce	morphological	changes	reminiscent	of	mesenchymal-to-epithelial	transition.	
For	example,	stimulation	of	EPHA2	forward	signalling	with	an	ephrin-A1–Fc	fusion	
protein	in	sparse	Madin-Darby	canine	kidney	epithelial	cells	enhances	the	maturation	of	
cell–cell	junctions	and	cell	compaction170,171	(see	the	figure).	In	a	positive	feedback	loop,	
E-cadherin	can	promote	EPHA2	expression	and	surface	localization	in	epithelial	and	
cancer	cells	that	have	reached	high	density,	thereby	prolonging	EPHA2	interaction	with	
co-expressed	ephrin-A1	and	forward	signalling19,20,170	(FIG. 2d).	Stimulation	of	EPHB2	
forward	signalling	with	ephrin-B1–Fc	can	also	couple	increased	intercellular	adhesion	
with	cell	contraction	and	apico-basal polarization	in	colorectal	cancer	cells	by	promoting	
the	membrane	localization	of	E-cadherin86.	Interestingly,	the	consequences	are	
dramatically	different	in	colorectal	cancer	cells	expressing	EPHB2	but	lacking	E-cadherin,	
in	which	ephrin-B1–Fc	stimulation	causes	cell	contraction	and	separation	instead	of	
promoting	cell–cell	adhesion86.	Stable	transfection	of	EPHB3	in	HT29	colon	cancer	cells,	
which	endogenously	express	ephrin-Bs	and	E-cadherin,	also	causes	changes	consistent	
with	mesenchymal-to-epithelial	transition42.	Furthermore,	moderate	ephrin-B	expression	
and	phosphorylation	can	promote	the	integrity	of	adherens	and	tight	junctions	in	
Xenopus laevis	and	HT29	cells87.	Conversely,	EPHB4	antagonists	have	been	shown	to	
disturb	intercellular	junctions	in	MCF-10A	mammary	epithelial	cells47.	Therefore,	
interplay	with	E-cadherin	can	convert	Eph	repulsive	signals	into	signals	that	promote	
cell–cell	adhesion.	It	is	not	known	whether	a	similar	interplay	may	occur	with	N-cadherin,	
which	often	replaces	E-cadherin	in	malignant	cancer	cells	that	have	undergone		
epithelial-to-mesenchymal	transition.	Studies	in	normal	tissues	suggest	that	Eph	
receptors	can	promote	N-cadherin-dependent	adhesion.	For	example,	EPHA4	forward	
signalling	is	crucial	for	the	N-cadherin-dependent	mesenchymal-to-epithelial	transition	
that	occurs	at	the	borders	of	developing	zebrafish	somites172.	Interestingly,	EPHA2	
mutations	in	humans	and	EPHA2	or	ephrin-A5	loss	in	mice	disrupt	the	N-cadherin-
dependent	intercellular	junctions	in	the	lens	epithelium,	causing	cataracts173,174.
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subcellular localization of signalling partners that are 
constitutively associated with an Eph receptor (FIG. 1) 
or become associated as a result of Eph phosphoryla-
tion by other kinases.

with regard to other receptors, the recently discov-
ered ephrin-independent downregulation of β1-integrin 
levels and cell substrate adhesion by endogenous 
EPHB4 can inhibit migration in some cancer cell types, 
although EphB-dependent decreased adhesion can pro-
mote invasiveness in others96,97. Additionally, distinctive 
signalling activities of Eph intracellular domain frag-
ments, which are generated by metallo protease and 
γ-secretase cleavage, might promote cancer cell malig-
nancy. For example, the EPHA4 cytoplasmic domain 
released by γ-secretase can enhance RAC1 activity in 
cultured cells independently of ephrin stimulation and 

kinase activity24. Furthermore, ephrin-B3 stimulation 
can block apoptosis that is caused by caspase-dependent  
cleavage of overexpressed EPHA4 in cultured cells, 
which interestingly suggests a role for EPHA4 as a 
‘dependence’ receptor108.

Tumour promotion by ephrin signalling in cancer cells. 
Little is known about the effects of ephrin-A reverse 
signalling in epithelial cells. One study has shown that 
ephrin-A1 is highly upregulated in hepatocellular car-
cinoma and promotes the proliferation and expression 
of genes associated with proliferation and invasion 
in human liver cancer cells109. In fibroblasts, EphA-
dependent stimulation of ephrin-A5 activates the Src 
family kinase FYN, integrin-mediated adhesion and 
Erk mAP kinases5,6 (FIG. 4). Accordingly, ephrin‑A5 

Figure 4 | eph tumour promoting pathways. a | Ephrin-A5 reverse signalling promotes activation of FYN, β1-integrins 
and Erk in fibroblasts5. b | Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is activated by Src and 
dephosphorylates and inactivates p190RHOGAP. This increases RHOA activity to destabilize adherens junctions in 
EPHA2-overexpressing epithelial cells103. EPHA2 (and EPHB2) activate RHOA through focal adhesion kinase (FAK)7,94. 
EPHA4 activates signal transducer and activator of transcription 3 (STAT3)185. A pathway involving EPHA2, PI3K and Vav 
family exchange factors for RAC1 operates in endothelial cells27,186. Activation of EPHA2 activates Akt in pancreatic cancer 
cells138. The Caenorhabditis elegans Eph receptor inhibits PTEN expression80. c | EPHA2–ERBB2 crosstalk activates the 
HRAS–Erk pathway and RHOA in a mouse mammary tumour model, enhancing tumour growth and in vitro cell 
proliferation and migration33,105. Akt, activated by ERBB2 or other pathways, phosphorylates EPHA2. d | Ephrin-B reverse 
signalling affects pathways that promote invasiveness, including matrix metalloproteinase 8 (MMP8) secretion17 and 
activation of STAT3,118 Src and RAC1 (ReFs 113, 114). By contrast, non-phosphorylated ephrin-B1 can bind PAR6 to inhibit 
atypical protein kinase C (aPKC)87. e | EphB forward signalling activates RAC1 and CDC42 exchange factors5,7,127, which 
could promote cancer cell migration and invasion. EPHB4 activates RHOA93. EPHB2-mediated RRAS tyrosine 
phosphorylation increases glioma cell invasiveness96. EPHB2-mediated ABL1 activation increases cyclin-D1 levels91. 
Pathways identified in neurons, endothelial and muscle cells, or C. elegans that are predicted to have tumour promoting 
activity are in blue, green or yellow boxes, respectively. Most other pathways were identified in cultured cells and their 
importance in cancer remains to be proved. For more details see ReFs 1,5–7,127. ARF1, ADP-ribosylation factor 1;  
EMT, epithelial-to-mesenchymal transition; JAK2, Janus kinase 2.
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overexpression can increase fibroblast growth in soft agar, 
as well as invasion and morphological transformation110. 
Ephrin-B reverse signalling also involves Src family 
kinases, which phosphorylate the ephrin-B cytoplasmic 
domain and so regulate its interaction with signalling 
molecules5,6. Src activation has been proposed to require 
the release of the ephrin-B intracellular domain by metal-
loprotease and γ-secretase cleavage following EphB bind-
ing, which decreases Src association with its inhibitory 
kinase CSK14. Furthermore, homophilic engagement of 
claudins, which are tight junction proteins, causes Src-
mediated ephrin‑B1 phosphorylation that slows down 
the formation of epithelial cell junctions and therefore 
might enhance invasiveness111. This is in contrast to 
the promotion of tight junction formation owing to 
ephrin‑B1 phosphorylation (discussed above). whether 
phosphorylation of different tyrosines, different levels  
of phosphorylation, or the cellular context might lead to 
positive or negative effects of ephrin-Bs on intercellular 
adhesion remains to be determined.

Other recurring themes in ephrin-B reverse signalling 
are a localization in lipid rafts and RAC1 activation, which 
can occur through multiple mechanisms and increase 
cancer cell migration and invasion112–114 (FIG. 4). For exam-
ple, ephrin‑B3 is upregulated in invading cells of glioma 
biopsy samples and promotes RAC1-dependent invasion 
of glioma cell lines112, and ephrin-B2 is upregulated in the 
invading cells of glioma and melanoma biopsy samples 
and its forced overexpression in the cultured cancer cells 
enhances integrin-mediated attachment, migration and 
invasion115,116. Furthermore, ephrin‑B1 reverse signalling 
has been reported to induce secretion of matrix metallo-
proteinase 8 (mmP8) and promote invasion of glioma, 
pancreatic, gastric and leukaemic cancer cells in vitro and 
in mouse tumour models17,113,117.

Ephrin-B reverse signalling may also modulate 
gene transcription in cancer cells. Ephrin-B1 binds 
and activates signal transducer and activator of tran-
scription 3 (STAT3), a transcription factor involved in 
cancer progression118 (FIG. 4). Furthermore, in neural 
progenitors ephrin‑B1 intracellular domain fragments 
can localize to the nucleus and bind the ZHX2 tran-
scriptional repressor, potentiating its activity, although 
it is not known whether this regulation also has a role 
in cancer25.

Tumour angiogenesis. Blood vessels are crucial for 
tumour growth and are an important venue for meta-
static dissemination. Several Eph receptors and ephrins 
promote angiogenesis by mediating communication of 
vascular cells with other vascular cells as well as tumour 
cells. The interactions with tumour cells may occur dur-
ing blood vessel growth and in tumour vessels with dis-
continuous endothelial lining. Furthermore, they may 
affect not only the endothelial cells but also, reciprocally, 
tumour cell behaviour119.

Analysis of tumours grown in Epha2-deficient 
mice or mice treated with inhibitory EphA–Fc fusion 
proteins suggests that EPHA2 forward signalling pro-
motes tumour angiogenesis27,31,56. By contrast, EPHA2 
does not seem to have a major role in developmental 

angiogenesis, and only recently have abnormalities in 
capillary development that may be due to defective peri-
cyte coverage been revealed in Epha2-deficient mice120. 
In vitro and in vivo data also show that EPHA2 forward 
signalling can increase blood vessel permeability, per-
haps in part through phosphorylation of claudins8,121. 
A major ligand for endothelial EPHA2 is ephrin-A1; 
the upregulation of ephrin-A1 in endothelial cells and 
consequent activation of EPHA2 have been reported 
to have an important role in the angiogenic effects of 
vEGFA and TNFα52,53. In tumours, ephrin‑A1 can be 
expressed by both endothelial and tumour cells52,122,123. 
Interestingly, the upregulation of EPHA2 and ephrin-A1 
that is observed in pancreatic tumours of mice treated 
with vEGF inhibitors suggests that EPHA2-dependent 
angiogenesis might contribute to the development of 
resistance to anti-vEGF therapies, possibly by promot-
ing endothelial coverage by pericytes and smooth muscle 
cells120,124. Curiously, ephrin-A3, another ephrin ligand 
for EPHA2, is downregulated in hypoxic endothelial 
cells in culture by the microRNA miR-210 and seems to 
inhibit angiogenic responses in hypoxic human umbili-
cal vein endothelial cells62. It will be important in future 
studies to evaluate the combined activities of all relevant 
EphA receptors and ephrin-A ligands in the regulation 
of capillary sprouting, vessel permeability and pericyte 
coverage, as well as their possible redundancies and 
opposing functions in tumour blood vessels.

EPHB4 and ephrin-B2 also have a role in tumour  
angiogenesis. During development, they are characteristi-
cally expressed in the endothelial cells of veins and arteries, 
respectively, and enable arterial–venous vessel segregation 
and vascular remodelling55–57,125. The currently available 
information highlights the importance of ephrin-B2 
reverse signalling in tumour angiogenesis, although lit-
tle is known about the role of EPHB4 forward signal-
ling56,126–128. Reverse signalling by ephrin-B2, and possibly 
other ephrin-Bs, in tumour endothelial cells, pericytes and 
smooth muscle cells probably depends on interaction with 
several EphB receptors that are expressed by vascular  
and/or tumour cells and has been shown to be important 
for blood vessel assembly, enlargement and decreased per-
meability both in cell culture and in vivo57,126,127. Ephrin‑B2 
signalling also promotes the interaction between endothe-
lial cells and pericytes or vascular smooth muscle cells60,128, 
suggesting that upregulation of this ephrin might stabilize 
the vessels of tumours recurring after anti-vEGF ther-
apy129. Ephrin‑B2 may also have additional roles in the 
tumour endothelium. For example, it might enhance  
the recruitment of bone marrow-derived endothelial 
progenitor cells that could participate in tumour vascu-
larization, through a mechanism involving the EPHB4-
dependent upregulation of selectin ligands130. It will be 
interesting to determine whether ephrin-B2 also promotes 
extravasation of EphB-positive metastatic tumour cells 
through the vascular endothelium, similar to its in vitro 
effect on monocytes58,131.

Eph proteins as therapeutic targets
Eph receptors and ephrins are promising new thera-
peutic targets in cancer. various strategies are under 
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evaluation to interfere with their tumour-promoting 
effects or enhance their tumour-suppressing effects, 
although our limited mechanistic understanding 
of the dichotomous Eph activities is a challenge in 
the design of therapeutic agents. Other approaches 
that do not rely on interfering with Eph function 
involve using Eph receptor-targeting molecules for 
the selective delivery of drugs, toxins or imaging 
agents to tumours, as well as the use of Eph-derived 
antigenic peptides to stimulate anti-tumour immune 
responses.

Interfering with Eph and ephrin function. Inhibiting 
the Eph–ephrin system may be particularly useful for 
anti-angiogenic therapies, and possibly to overcome 
resistance to anti-vEGF therapies27,29,55,124,129. Efforts 
to identify small molecules that target the Eph kinase 
domain have begun to yield some high affinity inhibi-
tors132–136 (TABLe 2). Furthermore, several inhibitors 
designed to target other kinases also inhibit Eph recep-
tors. For example dasatinib, a multi-targeted kinase 
inhibitor already used in the treatment of chronic 
myelogenous leukaemia and under clinical evaluation 

Table 2 | Eph and ephrin targeting molecules

Molecules Targets activity refs

Kinase inhibitors

Anilinopyrimidine derivatives EPHB4* ATP competitors 133,211

Benzenesulfonamide derivative EPHB4* ATP competitor 132

XL647 (also known as EXEL-7647)‡ EPHB4* ATP competitor 212

Xanthine derivatives Eph receptors ATP competitors 135,213

LDN-211904 Eph receptors ATP competitor 136

Pyrido[2,3-d]pyrimidine PD173955 Eph receptors ATP competitor 214

Nilotinib and analogues‡ Eph receptors ATP competitors 134,215

Dasatinib Eph receptors* ATP competitor 34,35, 
137,138

Inhibitors of Eph expression

siRNA EPHA2 mRNA downregulation 101,102,139

Oligonucleotides EPHA2 Protein downregulation 100

siRNA EPHB4 mRNA downregulation 36,37,194, 
216,217

Oligonucleotides EPHB4 Protein downregulation 36,194, 
216,217

Inhibitors of Eph–ephrin interactions

EPHA2–Fc and EPHA3–Fc Ephrin-A Eph competitor 53,218–220

sEPHB4 Ephrin-B Eph competitor 142,221,222

KYL and other peptides§ EPHA4 Ephrin competitor 147,150,223

SNEW and other peptides EPHB2 Ephrin competitor 145,149

TNYL-RAW peptide EPHB4 Ephrin competitor 145,148,224

Dimethyl-pyrrole derivatives EPHA2 and EphA4 Ephrin competitor 150,151

2H9 antagonistic mAb EPHB2 Ephrin competitor 143

Activators of Eph forward signaling (also downregulate Eph expression)

EA1.2 mAb EPHA2 Eph activation and degradation; possibly ADCC 100

EA2, B233 and 3F2-WT (humanized B233) 
mAbs

EPHA2 Eph activation and degradation; possibly ADCC 152,155

EA5 mAb EPHA2 Eph activation anddegradation; reduced Src 
phosphorylation and VEGF levels; possibly ADCC

153

Ab20 and 1G9-H7 mAbs|| EPHA2 Eph activation and degradation 156

mAB208 mAb EPHA2 Eph degradation and enhanced presentation of peptide 
antigens on tumour cell surface

154

YSA and SWL peptides EPHA2 Ephrin competitor; Eph activation and degradation 146

Dimerized IIIA4 mAbs EPHA3 Eph activation 161

Ephrin-A1–Fc EphA receptors Eph activation and degradation 74

Ephrin-B2–Fc EPHB4 Eph activation and degradation 127
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Neutral liposomes
small vesicles made of neutral 
phospholipids (such as DOPC, 
1,2-dioleoyl-sn-glycero-3-
phosphatidylcholine), which 
can be filled with small 
interfering RNA for efficient 
in vivo intracellular delivery to 
tumour tissue.

to treat solid tumours, potently inhibits EPHA2 and 
other Eph receptors in addition to its primary targets 
Abl and Src family kinases34,137,138 (EPHA2 clinical tri-
als). Interestingly, EPHA2 has also been identified as a 
biomarker for dasatinib sensitivity of cancer cells34,35. 
moreover XL647, an orally bioavailable EGF and vEGF 
receptor inhibitor being evaluated in clinical trials 
for lung cancer, also targets EPHB4 (EPHB4 clinical 
trials).

Downregulation of EPHA2 or EPHB4 expression 
with siRNAs or antisense oligonucleotides has been 
shown to inhibit malignant cell behaviour in culture 
and tumour growth in vivo36,37,100–102 (TABLe 2). For exam-
ple, the delivery of EPHA2 siRNA to tumours using 
neutral liposomes inhibits tumour growth and metas-
tasis in mouse models of ovarian cancer, particularly 
when combined with the delivery of siRNA silencing 
focal adhesion kinase (FAK) or with paclitaxel chemo-
therapy102,139. Eph receptor levels and function might 
also be reduced in vivo, as they are in vitro, by drugs 
that target the chaperone protein HSP90 (ReFs 140,141), 
although other proteins will also be concomitantly 
downregulated.

Another strategy that shows promise for cancer 
anti-angiogenic therapy is to inhibit Eph–ephrin inter-
actions. various molecules can be used for this purpose 
(TABLe 2). The dimeric EPHA2 ectodomain fused to Fc 
(which inhibits EphA forward signalling but promotes 
reverse signalling) and the monomeric soluble EPHB4 
ectodomain (which inhibits both forward and reverse 
signalling) can reduce tumour growth in mouse cancer 
models, at least in part by inhibiting tumour angiogen-
esis27,31,57,142. Antagonistic antibodies143,144 and peptides 
that inhibit ephrin binding to individual Eph receptors 

or subsets of receptors145–147 could be useful for inhibit-
ing Eph–ephrin interactions and bidirectional signal-
ling with a greater selectivity than the promiscuous 
Eph ectodomains. At least two of these peptides bind 
to the high-affinity ephrin-binding channel of their 
target receptor148,149. This Eph channel also seems to be 
suitable for targeting with chemical compounds, and 
two isomeric small molecules that preferentially inhibit 
ephrin binding to EPHA2 and EPHA4, albeit with low 
affinity, have been identified150,151. Structural character-
ization of additional small molecules and peptides in 
complex with Eph receptors could reveal general rules 
enabling the rational design of chemical compounds 
that are capable of selectively targeting Eph receptors 
with high affinity.

Intriguingly, ephrin ligands and agonistic antibodies 
have also been successfully used to inhibit tumour pro-
gression in mouse cancer models despite being activators 
rather than inhibitors of Eph–ephrin signalling (TABLe 2). 
These agonists have been proposed to function by stim-
ulating Eph forward signalling pathways with tumour 
suppressor activity and/or receptor degradation in the 
cancer cells47,152–154. Antibody-dependent cell-mediated 
cytotoxicity may also contribute to the anticancer effects 
of some of the antibodies155; this perhaps explains the 
discrepancies in the effectiveness of different EPHA2 
antibodies with similar agonistic properties155,156. Eph 
agonistic antibodies may also be useful in combination 
with chemotherapy33,153.

Eph-targeting agents probably function through a 
combination of multiple effects on cancer cells and the 
tumour microenvironment, which might explain  
the efficacy of agents with opposite mechanisms of 
action. For example, EPHA2 agonists would be expected 

Table 2 (cont.) | Eph and ephrin targeting molecules 

Molecules Targets activity refs

Cytotoxic molecules

1C1 mAb-mc-MMAF conjugate‡ EPHA2 Receptor-mediated internalization and disruption of 
microtubule dynamics

157,158

3F2-3M mAb (mutated 3F2-WT with 
enhanced effector function)

EPHA2 ADCC 155

bscEphA2xCD3 bispecific single-chain mAb EPHA2 and CD3 Redirection of unstimulated cytotoxic T cells to 
EPHA2-positive tumour cells

162

YSA-modified adenovirus§ EPHA2 Adenoviral transduction of EPHA2-expressing tumour cells 225

Ephrin-A1-PE38QQR Pseudomonas  
exotoxin A conjugate

EphA receptors EphA-mediated internalization and exotoxin-dependent 
cell death

226

Ephrin-A1 gold-coated nanoshells EphA receptors Absorption of near infrared light for photo-thermal 
ablation of tumour cells

159

2H9 mAb-vc-MMAE conjugate EPHB2 Receptor-mediated internalization and disruption of 
microtubule dynamics

143

Imaging agents
64Cu-DOTA-1C1 mAb EPHA2 Binding, which enables radioimmunoPET 160

YSA peptide-magnetic nanoparticles EPHA2 Binding, which enables cell capture 227,228
111Indium-labelled IIIA4 mAb EPHA3 Binding, which enables tumour detection 161

ADCC, antibody-dependent cell-mediated cytotoxicity; DOTA, 1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid; mAb, monoclonal antibody; 
mc-MMAF, stable maleimidocaproyl linker-monomethylauristatin F;  vc-MMAE, cathepsin B-cleavable valine-citrulline linker-monomethylauristatin E; PET, positron 
emission tomography; siRNA, small interfering RNA; VEGF, vascular endothelial growth factor. *Eph receptor selectivity has not been reported.  ‡In clinical trials. 
§Tested in vivo in a model of spinal cord injury. || Not effective in vivo.  
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Radioimmunopositron 
emission tomography (PET) 
imaging
PeT imaging using a 
radioactively labelled antibody. 
It allows non-invasive in vivo 
visualization of a tissue of 
interest, such as tumour tissue, 
that expresses the antigen as 
well as quantification of 
antigen levels.

Gamma camera imaging
Imaging with a camera that 
detects radioisotopes emitting 
gamma radiation. It is also 
known as scintigraphy and 
allows non-invasive in vivo 
visualization of radioisotopes 
coupled, for example, to an 
antibody that targets tumour 
tissue.

Epithelial-to-mesenchymal 
transition
A complex process in which 
genetic and epigenetic events 
lead to epithelial cells acquiring 
a mesenchymal architecture 
concomitant with increased cell 
motility. Typically associated 
with the loss of e-cadherin 
expression, disruption of 
cell–cell junctions, and cancer 
cell invasion and metastasis.

to enhance tumour suppressor signalling pathways and 
receptor degradation in the cancer cells but promote 
tumour angiogenesis31. Conversely, some Eph kinase 
inhibitors with anti-angiogenic activity might also 
block possible Eph tumour suppressor activities. Such 
inhibitors could therefore be particularly effective for 
the treatment of tumours in which Eph forward sig-
nalling pathways with tumour suppressor activity are 
not activated. EPHB4 agonists that also antagonize 
ephrin binding may be particularly beneficial by both 
enhancing EPHB4-dependent tumour suppression 
in cancer cells and inhibiting ephrin-B2-dependent 
angiogenesis47,127. ultimately, how a tumour will 
respond to a particular Eph-targeted strategy is likely 
to depend on the tumour type, stage and microenvi-
ronment. Selecting optimal strategies to interfere with 
Eph function for cancer therapy will therefore require a 
better understanding of Eph signalling mechanisms in 
the different cellular compartments of tumours. Eph-
dependent oncogenic signalling networks may also be 
suitable therapeutic targets. Newly developed target-
ing molecules, in particular those with selectivity for 
individual Eph receptors or ephrins, in turn represent 
useful research tools to further our knowledge of Eph 
cancer biology.

Targeted delivery of drugs, toxins or imaging agents. 
Because of their increased expression in many tumours 
compared with normal tissues, Eph receptors are 
attractive targets for the delivery of drugs, toxins or 
imaging agents to cancer tissue. Several chemothera-
peutic drugs and toxins that are conjugated to Eph anti-
bodies or an ephrin, which cause receptor-mediated 
drug internalization, seem to be promising in ini-
tial studies (TABLe 2). EPHA2- or EPHB2-targeting 
antibodies that are coupled to the derivatives of the 
peptide drug auristatin, which disrupts microtubule 
dynamics, inhibit the growth of several cancers in 
rodent models143,157,158. Another potential application is 
the targeted delivery of gold-coated nanoshells conju-
gated to ephrins for photothermal destruction of Eph-
positive cancer cells159. Importantly, systemic toxic 
effects have not yet been apparent and the EPHA2 
antibody coupled to an auristatin derivative is under 
clinical evaluation (NCT00796055). Notably, target-
ing Eph surfaces that are preferentially exposed on 
tumour cells, which may include the ephrin-binding 
channel, could further improve the therapeutic 
index152.

Antibodies, ephrins and peptides can also be used 
to deliver imaging agents for diagnostic purposes. 
EPHA2 is a particularly attractive target for this appli-
cation given its widespread expression in both cancer 
cells and tumour vasculature and low expression in 
most adult tissues27,56,160. Promising results have been 
obtained in animal models by using an EPHA2 anti-
body labelled with64Cu through the chelating agent 
1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic 
acid (DOTA) for radioimmunopositron emission tomography 
(PeT) imaging and an EPHA3 antibody coupled to 111Indium 
for gamma camera imaging160,161.

Immunotherapy. In addition to the immune cell-mediated 
cytotoxicity that can be elicited by Eph-targeted antibod-
ies, a bispecific single-chain antibody that simultaneously 
binds both EPHA2 and the T cell receptor–CD3 complex 
causes T cell-mediated destruction of EPHA2-positive 
tumour cells in vitro and decreases tumour growth 
in vivo162 (TABLe 2). Eph receptors that are preferentially 
expressed in tumours compared with normal tissues are 
also attractive targets for cancer vaccines. EPHA2, EPHA3 
and an EPHB6 isoform have been identified as sources of 
tumour-associated peptide antigens that are recognized 
by cancer-specific cytotoxic T cells163–166. Interestingly, 
agonists and drugs that stimulate Eph receptor degra-
dation might inhibit tumour growth at least in part by 
enhancing the presentation of Eph-derived peptides that 
are recognized by effector T cells141,154. vaccination with 
Eph-derived epitopes also shows promise as a strategy to 
elicit tumour rejection167,168.

Perspectives
Accumulating evidence implicates the deregulation of 
the Eph–ephrin cell communication system in cancer 
pathogenesis. The Eph receptors are emerging as mas-
ter regulators capable of either potentiating the activi-
ties of oncogenic signalling networks or repressing them, 
depending on ephrin stimulation and other contextual 
factors. Remarkably, Eph receptors and ephrins can 
switch between contrasting activities by using bidirec-
tional signalling as well as other signalling modalities 
to influence cancer cell behaviour. we still only know 
relatively little about how the Eph system regulates 
tumorigenesis at the molecular level, but clearly there is 
extensive cell context dependency for many Eph path-
ways. For example, many of the differences observed 
in Eph–ephrin signalling outcomes may relate to dif-
ferences in spatial and temporal coordination of input 
signals and relays, and so vary between cell types as well 
as in vitro and in vivo environments169. An important 
step forwards will be to understand the Eph activities 
beyond bidirectional signalling and the crosstalk with 
oncogenic pathways in detail. Furthermore, systems-
level studies will be instrumental for providing a com-
prehensive overview of the effects of Eph bidirectional 
and unconventional signalling mechanisms in cancer 
and stromal cells; comparing the signalling activities of 
different Eph and ephrin family members; examining 
the consequences of changes in Eph and ephrin expres-
sion, for example to compare the effects of Eph recep-
tor downregulation by agonists and by transcriptional 
silencing; and elucidating the effects of cancer-relevant 
Eph and ephrin mutations. Indeed, a recent proteomic 
analysis combined with siRNA screening and data-driven 
network modelling has provided a wealth of tantalizing 
new information on the asymmetric bidirectional signal-
ling networks that are initiated by ephrin-B1 and EphB2 
at sites of cell–cell contact88. Another area of great interest 
is how the Eph system influences the metastatic process, 
including tissue invasion, dissemination through the vas-
cular system, possible reversal of epithelial-to-mesenchymal 
transition at distant sites, and dormancy of Eph-expressing 
micrometastases seeded in ephrin-rich tissues.
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